Waste management options to control greenhouse gas emissions – Landfill, compost or incineration?

Paper for the ISWA Conference, Portugal, October 2009

by Barbara Hutton, Research student, Master of Sustainable Practice, RMIT University, Ed Horan, Program Director, Master of Sustainable Practice, RMIT University, Melbourne and Mark Norrish, Mathematics, Australian National University, Canberra (Australia)

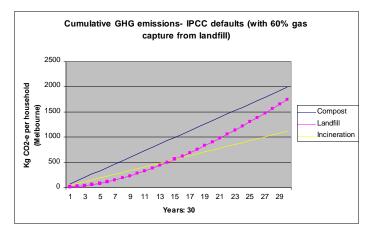
Executive summary

Methane (CH₄) is predicted to cause as much global warming as carbon dioxide (CO₂) over the next 20 years. Traditionally the global warming potential (GWP) of methane has been measured over 100 years. The IPCC's Fourth Assessment Report (IPCC 2007) warns that this underestimates its immediate impact. Viewed over 20 years it has 72 times the GWP of CO₂.

The current study was prompted by concern about these emissions, and by a recent Government policy study in Melbourne, Australia, which recommended composting of municipal waste. Melbourne has not run out of landfill space, and has best-practice landfills with methane gas extraction. The mass composting of waste would reduce landfill gas, currently used as a fuel.

Aim of the study

This study uses recent information (2006 IPCC Guidelines) with local data to estimate:


- How much greenhouse gas is emitted to the atmosphere from best practice landfill with methane capture pipes? How much can be captured to use as fuel?

- Is aerobic composting or incineration better at controlling emissions than landfill with gas capture ?

Method

A spreadsheet was set up to compare emissions of methane, nitrous oxide and anthropogenic (man-made) carbon dioxide from compost, landfill and incineration, based on IPCC figures. The IPCC model allows for differences in temperature, humidity, dryness and aeration in the landfill, and different types of organic waste. Melbourne (Australia) was used as a case study for the spreadsheet

Results

Greenhouse gas emissions over 30 years: compost, landfill and incineration

Over the next 30 years, incineration produced the least greenhouse gas emissions, followed by landfill with gas extraction. Surprisingly, aerobic composting produced the highest level of emissions. This is based on the assumption that landfill has leachate and gas capture pipes, as is now common in Melbourne, with 60% gas capture. We assumed that 10% of the escaping methane was oxidised as it passed through the soil cover, and some waste would break down aerobically before anaerobic conditions were established. IPCC estimates for CH_4 , N_2O and anthropogenic CO_2 emissions from composting and semi-continuous fluidised bed incineration, were compared with the landfill emissions.

Findings

1. Incineration of waste had the least climate impact of the three methods of disposal, followed by landfill with gas capture. This study did not estimate CO_2 savings from waste-to-energy, only the benefits from reducing greenhouse gas emissions, CH_4 and N_2O , from landfill and composting. If energy-from-waste is used to replace coal-fired electricity, results for incineration and landfill gas capture would be even better.

The results supported earlier studies by Pipatti and Savolainen (1996) and the Hyder Study of waste options for Melbourne (2007). Both found that incineration was in fact the best option for reducing greenhouse gases. Anaerobic digestion of wastes for methane would work well if 100% of organic waste could be separated, but this is unlikely to happen in reality. Pipatti and Savolainen found that the second best option was landfill with CH_4 used as fuel. Our study supports this finding.

2. Composting does reduce the amount of waste going to landfill, as an end in itself. In the long run it may reduce GHG emissions. But initially it brings the emissions forward, meaning that climate change is accelerated. In this scenario, it takes more than three decades for greenhouse emissions from landfill to catch up with those from aerobic composting.

It is possible than in 30 years time a solution may be found to methane escaping from landfill, or that energy prices will be so high that landfill is mined as a fuel. So the predicted longer term emissions from landfill may never eventuate. Diverting organic waste to compost now, without capturing emissions from the compost, may be counter-productive, merely hastening the melting of Arctic and Antarctic ice.

Conclusions

An earlier, more detailed study of the options for Melbourne's municipal waste, suggests that the goal of diverting waste from landfill is over-emphasised as Melbourne has adequate landfill space, and more is created by quarrying activities. The huge volume of poor compost produced if all household waste is composted may lead to a collapse in the market for compost.

• Well managed landfill with gas capture can reduce methane levels and delay emissions for decades. About 50% of the organic carbon is sequestrated and only about 5% of waste decomposes in landfill annually. Most of the methane can be captured or oxidised at the landfill site.

• There is great potential for energy generation from thermal electricity generation from municipal waste; from landfill gas and in some cases anaerobic digestion of separated waste. Spark ignition motors are currently used to convert methane to electricity, but fuel cells, cogeneration of energy and heat, and direct use of methane are all possible.

• Municipal waste should not be routinely composted before disposal, and certainly not in open air windrows. Landfill with gas capture is a better option for reducing emissions, and producing bio-fuel.

• Home composting bins may produce more greenhouse gas per unit of waste than landfill.

• Compost can play an important role in Australia, especially in organic farming and as tip cover, to oxidise escaping methane, but high quality compost from separated organics is best for both purposes. The priority is to compost rural and animal wastes which currently do not go to best practice landfill and may be releasing large quantities of CH₄ and N₂O.

Background: Melbourne moves to divert organic waste from landfill to compost

In Melbourne, the Metropolitan Waste Management and Resource Recovery Strategy (MWMS 2008) examined several options for solid waste management in 2008 and produced a policy this year.

Melbourne households are already supplied with two bins, one for recyclables (bottles, cans, plastics, paper) and another for residual waste. Suburban households often have a third bin for garden waste. Australia has a policy of minimising waste to landfill. A study of residual waste in 2005-6 found that 41% was food waste, 18% green waste and 6% paper – all organic waste which could be composted.

The MWMS plan considered options for diverting organic waste from landfill, including composting residual waste in large-scale Advanced Waste Treatment composters (AWTs); separating organic waste for aerobic or anaerobic composting, and thermal power from waste.

Hyder Consultants (Hyder 2008) were employed to carry out a study. They found thermal electricity generation performed best in all areas, even reducing air pollution because it would replace highly polluting brown-coal-fired energy, which is the current source of Melbourne's electricity. Burning the waste would also reduce GHG emissions by eliminating methane from landfill. However it rejected the option of incineration because of community concerns and difficulty in siting the incinerators.

<u>Compost</u>: it found anaerobically digested, separated wastes produced the best compost, and produced 80-100kWh of energy for every tonne of waste. But not all organic waste would be removed from landfill; there would still be methane gas escaping. The MWMS study therefore favoured Advanced Waste Treatment, with all residual waste including garbage composted. This produces stabilised landfill and poor quality compost. A submission from Boral, the managers of Melbourne's Western Landfill (Boral submission 2007) and also involved in composting at the Pine-Gro composting plant, suggested the compost from mixed residual waste would be unsalable, and would probably go to landfill. Anaerobic treatment of mixed residual waste is difficult because of contaminants (Fulhage, 1993). The Hyder study found it would produce no net energy and in fact slightly cost in energy.

Measuring methane from landfill, composting and incineration

Our present study aims to objectively compare the options for waste disposal. It uses the United Nations Framework Convention on Climate Change (UNFCCC/CCNUCC) "Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site", version 4, 2008 ("the tool") to compare methane generation from landfill versus aerobic composting and GHG emissions from incineration. Equations and background information from the 2006 IPCC "Guidelines for National Greenhouse Gas Emissions", Vol. 5 "Waste", Chapters 2 – 5 and Vol.2, "Energy" were also used.

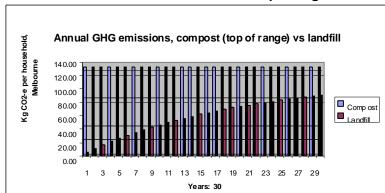
The following factors are used to calculate methane emissions:

1. Quantity of organic waste deposited in landfill each year, per household.

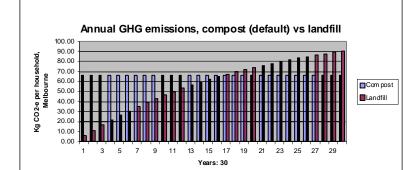
2. Fraction of degradable organic carbon in the waste (averaged over its various components)

3. Fraction that actually converts to methane. Only about half of this matter ever decomposes, and of this, only half converts to methane.

4. The conversion factor from carbon to methane.


- 5. The rate of accumulation of waste in the landfill, and the rate of decomposition of waste.
- 6. Methane captured from landfill for flaring or fuel.

7. "Methane correction factor": Some organic material decomposes aerobically due to oxygen inside the landfill: less if it is wet and anaerobic, more if it is well managed and dry.


8. Some methane oxidises on its way out, if the site has a soil or compost "biocap" cover.

Altogether, only a very small amount of potential methane escapes from best practice landfill, and it is produced very slowly, as the decomposition rate in a dry temperate climate is only about 5% per year. Aerobic composting produces mostly CO₂, but also releases a small amount of methane (the IPCC default estimate is 4 grams of methane per kilogram of organic waste).

Incineration produces mostly CO₂. Open burning of waste does produces CH₄ but continuous fluidised bed incineration produces none at all. In this study it is assumed that semi-continuous fluidised bed incineration is used – this produces CH₄ and N₂O which have been taken into account in calculating emissions.

Results 1. GHG from landfill versus aerobic composting

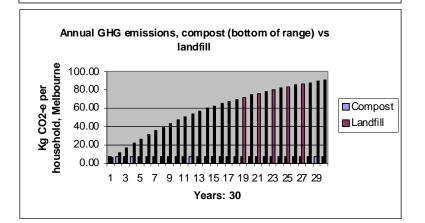


Fig. 1: Greenhouse gas emissions over 30 years: landfill compared to a range of values for composting.

The top chart shows <u>maximum</u> expected GHG emissions for managed composting. These are likely to be found in a warm climate, where compost is kept wet. The second chart shows the IPCC<u>default</u> value for compost. The third shows <u>minimum</u> values, probably inapplicable to Australia. Much of the IPCC's

referenced data is from Scandinavia and Finland where it is very much colder than Australia and so little methane is produced.

Methane and N₂O emissions from poorly managed composting may be even higher than those shown in the top graph. Bert Metz (2007 IPCC) points out "CH₄ and N₂O can both be formed during composting by poor management and the initiation of semi-aerobic (N₂O) or aerobic (CH₄) conditions; recent studies also indicate production of CH₄ and N₂O in well-managed systems (Hobson et al 2005).' A small but disturbing study from the Griffith University, Queensland, Australia (the Insinkerator study, 1994) compared household composting systems with sink disposal units and landfill. Very high levels of methane were found in unmanaged household compost bins.

Assumptions on methane correction factor in landfill

The above graphs assume a methane correction factor (MCF) of 0.6 for landfill, i.e. it is 60% anaerobic. The IPCC recommends this value if it is not known how the waste is managed. If waste is unmanaged in a shallow tip, the MCF value is 0.4, as much of the waste will degrade aerobically. If the waste is buried deep or the water table is a high, e.g. if it is dumped in a swampy area, a value of 0.8 is used. If it just compacted or levelled and covered, the MCF is 1.

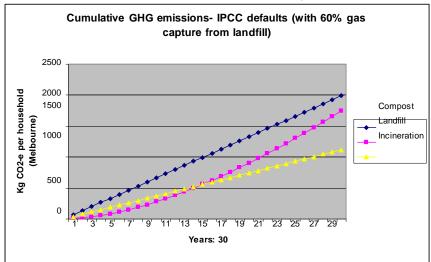
In the 1996 IPCC Guidelines, all managed waste was assumed to be 100% anaerobic (an MCF of 1). This was a heroic assumption. It requires only very low levels of oxygen in the waste to produce some aerobic decomposition, especially before anaerobic conditions are established in the waste (see Metz, IPCC 2007). A recent Swedish study (Smars, Sven and Beck-Friis 2002) found some aerobic decomposition in waste was still occurring at 1% oxygen levels.

In the 2006 IPCC guidelines a new category of semi-anaerobic landfill has been introduced with an MCF of 0.5. This type of landfill has leachate drainage, gas capture, ventilation and permeable cover. In Melbourne, landfill sites typically have leachate drainage and gas capture. It is uncertain whether the tip cover is permeable. (It is not intended to be, yet it is estimated that 40% of the methane escapes through it.) The subsoil is externely dry, relative to Europe and Scandinavia. This would tend to allow oxygen to penetrate.

Further studies are required to establish how much decomposition occurs before landfill conditions become anaerobic, how much oxygen is found in landfill gas and what the real MCF is in Melbourne. The Australian Government Department of Climate change still classifies all landfill in Australia as 100% anaerobic on the grounds that it is "managed". This follows the classification in the now superseded 1996 IPCC Guidelines. More up-to-date estimates are needed.

Why do the results show higher emissions for compost relative to landfill and incineration than are generally assumed?

Much of the widespread understanding of GHG emissions from landfill, compost and incineration is based on early modelling in the 1996 IPCC Guidelines. Since then it has been discovered that: - composting does release CH4 and N2O. A range of estimates has been provided.


- landfill is not always 100% anaerobic but can be semi-anaerobic, with an MCF of 0.5.

- much organic material in waste does not degrade under anaerobic conditions. The 2006 IPCC advises that only 50% at most will decompose in landfill. Of this, only about 5% of decomposable organic waste decomposes each year.

- a "First Order Decay model" has been introduced to account for the slow decay of waste in landfill: Earlier models erroneously assumed that decomposition all occurred in the first year.

Assumptions on carbon storage, gas capture and gas oxidation in tip cover

The 2006 IPCC Guidelines' assumption of 50% carbon storage in landfill is conservative. The IPCC also conservatively assumes that only 10% of methane is oxidised in soil or compost cover of landfill: the USEPA (2002) puts it at 70-85%. Finally our study assumes 60% of landfill gas is captured but Metz (IPCC 2007) states that gas capture may be 90% or more. There are still many unknowns but assumptions in this study are probably conservative.

2. Results on Incineration versus the other two options

Fig 2: Cumulative Greenhouse gas emissions over 30 years: compost, landfill and incineration.

Incineration produces the least GHG. According to the Hyder report 2007 it would also produce less of other kinds of air pollution and more green energy than other options.

Note that the IPCC considers only CO2 from burning fossil-fuel based wastes to be anthropogenic (man-made). CO_2 produced from burning organic waste is not counted. It would occur anyway in nature, whether the waste material oxidised slowly in decomposition or quickly in burning. CO_2 emissions from composting and landfill are also not counted. As the global warming potential of methane and nitrous oxide is much greater than that of CO_2 , including non- anthropogenic CO_2 would make little difference to the results.

Findings

1. For about the first 30 years, under the assumptions used in our study, aerobic composting releases greenhouse gas (GHG) more quickly than landfill, meaning that climate change is accelerated. Possibly in 30 years, energy prices will be so high that landfill is mined as a fuel, or better methods of containing CH4 in landfill will be developed. So the predicted longer term emissions from landfill may never eventuate. Diverting organic waste to compost now may be counter-productive, merely hastening global warming.

2. Incineration produces the least man-made GHG emissions of all methods of waste disposal. The Hyder study of Melbourne's waste (2007) found the same thing. In some Scandinavian countries, thermal waste-to-energy has been part of national energy since the 1970s global energy crisis (Bateman 2006). A study by Dr Riitta Pipatti, leading author of the 2006 IPCC Guidelines Vol. 5, "Waste", and I. Savolainen (1996) found that mass incineration was the best option and that composting released more emissions than landfill with gas capture: compare options 3 and 4 in the following diagram from the Pipatti study:

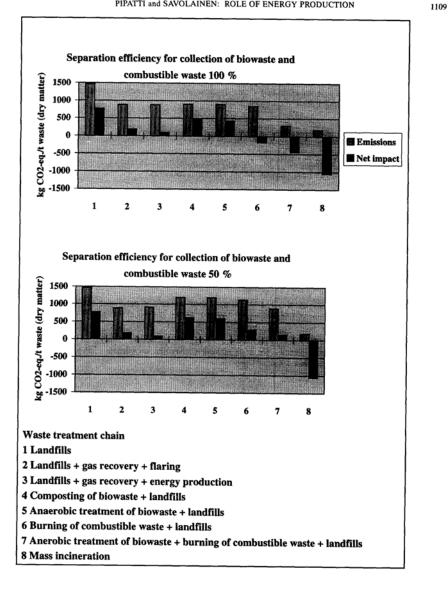


Figure 2. Greenhouse impact due to alternative municipal waste treatment chains per tonne dry matter of average municipal waste.

Recommendations

- Provide public education to calm the public's fears about incineration, and explain that CO₂ and some CH4 are released when waste decomposes in landfill or compost. This is not widely understood. Many people believe composting produces no GHG of any kind, and that the carbon all stays in the compost.
- Further research should be done on: -Municipal waste as an alternative fuel for electricity generation, instead of the present fuel, coal. -Emission levels of methane from municipal and household compost in warm conditions. There is little data on emissions from household composting systems, but what exists, suggests unmanaged bins may produce high levels of methane. -the possibility of reducing CH4 emissions from landfill with compost bio-caps
- Where possible methane emissions from aerobic composting should be captured and oxidised. The emphasis in composting should be on rural and agricultural wastes, especially animal manure.

References

IPCC 2007: Fourth Assessment Report, chapter 2 pp 206, 212 Diagram 22.25 and text.

MWMS 2008: "Draft Metropolitan Waste and Recovery Strategic Plan" released on 2 April 2008 at <u>www.sustainability.vic.gov.au</u>, now accepted with some changes. Most information is in the "Schedule".

2006 IPCC Guidelines for National Greenhouse Gas Emissions Vol. 5 "Waste", Chapter 2-5 and Vol. 2, "Energy", section 2.3 Table 2.4.

Also the UNFCCC/CCNUCC "Tool to determine methane emissions avoided from disposal of waste at a solid waster disposal site" (version 4, 2008).

R. Pipatti and I. Savolainen 1996, "Role of Energy Production in the Control of Greenhouse Gas from Waste Management,"

Hyder Consulting (2007): "Modelling and analysis of options for the Metropolitan Waste and Resource Recovery Strategic Plan," 2007. Lifecycle calculations by Tim Grant are in the "Appendix: LCA of Waste Management Options", RMIT Centre for Design, Dec 2007, on www.mwmg.vic.gov.au

Boral 2007: Comments from Boral in response to reference 3 above, from Boral Melbourne, <u>www.boral.com.au</u>, or at: <u>www.sustainability.vic.gov.au/resources/documents/boral.pdf</u>

Fulhage, Charles et al, 1993. "Generating Methane" University of Missouri Extension,

Insinkerator Study 1994: Professor Philip Jones et al: "Economic and environmental impacts of disposal of kitchen organic wastes using traditional landfill - Food waste disposer - Home composting", Waste Management Research Unit, School of Engineering, Griffith University, Queensland.

Bateman, Sam, Hanson Landfill Services: "Response to the Productivity Commission Inquiry Draft Report on Waste Management" Feb 2006.

Guzzone. Brian and Mark Schlagenhauf "<u>Garbage in, energy out - landfill gas opportunities for CHP projects</u>" in Cogeneration & On-Site Power Production website //www.cospp.com. September 2007

"Cover Up with Compost" U.S. EPA fact sheet, Washington 2002

The fact sheet concerns a study of biocaps on landfill.: "Austrian researchers Humer and Lechner found that their [compost cover] system results in complete decomposition of the methane released from a 10-year-old landfill site more than 65 feet deep... a matured compost characterized by a high humic content, low ammonium and salt concentrations, and adequate pore volume yielded the best results. Their emission reductions exceed that of a landfill gas recovery system, generally thought to collect about 70 to 85 percent of the total landfill gas generated."

Metz, Bert: IPCC Climate Change 2007: "Mitigation of Climate Change" Intergoverrmental Panel on Climate Change, Working Group 3, Chapter 10 Waste Management.

Smars, S: "Influence of different temperature and aeration regulation strategies on respiration in composting", Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala 2002, with B. Beck-Friis.

Assumptions Used in the Spreadsheets

It is assumed that 60% of the methane landfill gas is captured. This is based on the estimate for Victoria given in the Hyder study and personal communication with Mr Clete Elms of Boral for Western Landfill. As Western Landfill (and Victoria in general) has low rainfall, a low water table and gas and leachate collection, the MCF was assumed to be 0.6 (the default option for "unknown"). The oxidation factor for methane escaping through the biocap.from landfill is assumed to be 10%.

A Victorian Department of Sustainability study of residual waste for northern municipalities of Melbourne 2005/6, shows 41% of waste is food organics, 18% garden organics, 6% paper and cardboard and a small quantity of nappies. This breakdown of waste was used in the study. Household waste is assumed to be 75% organic. Average amount of waste to landfill for a suburban household was assumed to be 500 kg. p.a.

The 2006 IPCC Guidelines were used for the following:

IPCC Fractions of degradable organic carbon (DOCj) by weight the waste type j (wet weight)

Wood, wood products	43%	
Pulp, paper & cardboard (other than sludge)	40%	
Food, food waste, beverages, tobacco ,,	15%	
Textiles	24%	
Garden, yard and park waste	20%	(Inert waste 0)

IPCC Default k values - boreal and temperate (for a low rainfall area)

multiplied by percentage of organic component of waste to give average decay rate (as a fraction):

Paper, cardboard	0.04	x	8%	0.0032
Green waste	0.05	x	25%	0.0125
Food waste	0.06	x	60%	<u>0.0360</u>
			Total	0.052 per annum weighted average.

Source: 2006 IPCC Vol. 5 "Waste", Tables 2.4 and 2.5, and Chapter 3. The original formula from The UNFCCC "Tool for calculating the amount of methane avoided from solid waste disposal, Version 4, 2008" is used as a basis for the equations:

$$BE_{CH4,SWDS,y} = \varphi \cdot (l-f) \cdot GWP_{CH4} \cdot (l-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_{f} \cdot MCF \cdot \sum_{x=l}^{y} \sum_{j} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (l-e^{-k_{j}})$$
(1)

What the terms mean:

BE	Baseline	emissions

- This is an uncertainty factor to make the equation more conservative when claiming carbon credits for avoiding emissions. It is omitted from the spreadsheet.
- (1-f) Fraction of methane flared or captured. If 60% or 0.6 of the methane is captured, 1-f is 0.4.
- **GWP** This is the global warming multiplier to convert methane to CO₂; a 21 GWP has been used in the graphs but the higher figure of 72 (over 20 years) is shown in the tables as well.
- **OX** Oxidation factor: the amount of methane oxidised in the bio-cap. The 2006 IPCC default value is 0.1 or 10%. If there is soil bio-cover, (1 OX) = 0.9.
- 16:12 This ratio converts the molecular weight of carbon to that of methane.
- **F** Fraction of methane in landfill gas- usually 50% or 0.5 as a fraction.
- Doc_f Fraction of degradable organic carbon that can decompose in landfill again 0.5. (2006 IPCC)
- **MCF** Methane correction factor this indicates that some organic waste decomposes aerobically. For a shallow unmanaged landfill it is 0.4. A managed site with permeable cover, leachate drainage, gas ventilation etc in a temperate/boreal climate is 0.5. (Source, "Tool" cited above.)
- \mathbf{y} \mathbf{y} is the sum of the amounts of waste deposited since first year of the project (x = 1),
- x=1 shown as a table.
- $\Sigma W_{j,x}$ is the sum of the types of waste deposited in the SWDS. For Western Landfill
- **Docj** Fraction of degradable organic carbon by weight in the waste type. Food is 15% DOC by wet weight, green waste is 20% and paper 40%.
- Kj is the decay rate for waste type j. (See table above.)
- e is Euler's number, a constant used for calculating exponential decay or accumulation. The two expressions involving "e" show time taken for methane levels to accumulate, and for the waste to decompose away.

y is the year for which emissions are calculated, for instance year 10 of waste disposal. Note the results will be different for every year. The years are set out sequentially in Spreadsheet 2:

The Spreadsheet:

Methane emissions: Landfill, composting and incineration For a typical Melbourne SWDS, per household, p.a.

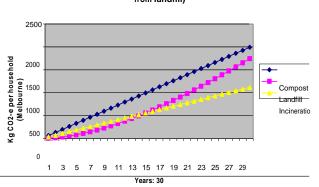
Total methane emissions over a 30 year period

Assumes MCF = 0.6 (default option where management is not known)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Assumes MCF = 0.6 (default option where management is not known)														
$ \begin{array}{c} y_n & means stands The stands of the stands of the stands the stand$																	
DCC relics of application projection to watery 0 0.50 1 DCC methods of application is application to constrain the application of application is application to constrain the application of application is application of application of application applicatio	Source 1					. *		ICF=!									
Model Measure to manage is a formulation in the intermed Model			÷			•											
$ \begin{array}{c} & \text{Mar} & $											Cumulative	Methane	Methane	Cumulative	Cumulative	Cumulative	Cumulative
benounce manage last decay rate l is also decay rate muscle last				-							org. carbon	generated	emission	methane	GHG	CO2-e	Co2
DDOCh mean deconvolute up, nation that deginesities 22.5 37.50 $\frac{y_{11}}{y_{12}}$ y							0.60	1			in landfill	landfill	s landfill	from	compost	GWP = 21	emissions
Variables related to time and decay rate 1.333 1.333 1.333 1.333 1.133							22.5	37.50			-				. ,		Incineratio
Watebooks related to time and decay rate V1 0.062,000,000,000,000,000,000,000,000,000,		DDOCIII	mass of decomposal	bie org. ca	rbon that c	legrades	22.5	37.50		Voo	kgp.a.	-					n
His Cork C = 1612 1.333 Y12 43.84 1.51 0.54 0.82 133 17.25 74.44 N = decay matrix for wass type is commutation of wast = 0.054 W12 243.84 1.51 0.54 0.82 133 17.25 74.44 (1 = 6 ¹) decomposition frame to gammatiation of wast = 0.054 W12 220 0.76 1.51 199 333 112.61 233.23 Variables related to SVIDS W12 118.73 4.08 1.26 2.36 1.56 7.00 2.57 1.57.25 7.44.4 1.51 1.56 7.00 2.57 1.57.25 7.44.4 1.51 1.56 7.00 2.56 1.56 7.00 2.57 1.57.25 7.44.1 1.51 1.57.25 7.44.1 1.51 1.57.25 7.44.4 1.51 1.56 7.00 2.56 1.56 7.00 2.56 1.50 7.57 2.54 1.50 7.67 2.54 1.50 7.65 2.56 1.50 7.65 1.50 <		Variables	related to time a	nd deca	v rate					Yr 1	A	B 077	JC 7	D 	E 66	F 5	G 37.22
 				nu uccu	yraco		1.333						Emitted 0.54	Landfill 0.20 0.82	Compost 00		
$ \begin{array}{c} -n^{-1} & \text{rate of scaling of wasta } 0.9484 \\ (1-e^{-1}) & \text{the obscaling of wasta } 0.0516 \\ (1-e^{-1}) & \text{the occumulation of wasta } 0.0516 \\ (1-e^{-1}) & \text{the occumulation of wasta } 0.0516 \\ (1-e^{-1}) & \text{the occumulation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta } 0.6 & (1+1) & 0.40 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation of wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation wasta } 0.0516 \\ (1-OX) & \text{the trat issues wasta of monoto compation wasta } 0.0516 \\ (1-OX) & the trat issues wasta of monoto compation wasta $						0.053											
(1-e ⁻⁶) decomposition rate of accumulated wester 0.0516 Yr 6 11.47 3.4.08 1.4.7 3.5.3 81.9.4 12.8.1 22.3.2 Variables related to SWDS Yr 6 11.8.1 2.8.1 5.3.1 18.6 1.6.7 7.5.7 3.9.8 1.2.8.1 22.3.2 P- sources for dg nis concept of the source 0.6 (1-4) 0.40 Yr 8 15.0.6 5.6.8 7.7.0 4.65 1.8.7.4 20.0.5 3.9.8 1.8.1 1.8.7.1 22.0.7 3.9.8 1.8.7.1 22.0.7 3.9.8 1.8.7.1 2.7.7.6 7.7.4 4.65 1.8.7.1					ste												
Variables related at SWDS Price anome SWL data to acquired in to acquired in to acquired in the sources of the data to acquired in the data data to acquired in the data to acquired in the data d										Yr 5							
F- seames 60% ergs is explained 0.6 (1+0) 0.90 Yf 156.36 5.18 1.86 6.91 5.31 187.10 297.72 372.01 Results Yf 156.36 5.69 2.06 10.96 5.97 230.09 343.86 494.42 Methane captured in year 20 Kg methane 5.88 Yf 12 295.13 7.05 2.54 18.10 7.97 380.12 446.64 Methane captured in year 20 Kg methane S.83 Yf 12 295.13 7.06 2.26 12.85 483.55 483.66 483.65 483.66 483.66 483.55 483.66 483.65 483.66 483.66 483.55 483.66 <t< td=""><td></td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Yr 6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		. ,								Yr 6							
(1-OX) Defait (assumes solar compact cover) 0.90 Yr 9 96.58 6.89 2.05 10.96 597 232.09 334.88 Results Yr 11 192.57 6.62 2.38 15.56 7.30 326.78 409.94 Methane captured in year 20 Kg methame 5.88 Yr 112 205.13 7.05 2.54 113.10 7.77 380.12 446.64 Wethane captured in year 20 Kg methame 3.53 Yr 114 228.34 7.85 2.83 2.861 92.99 495.91 521.08 Wethane captured in year 20 Kg methame 3.53 Yr 116 249.21 8.31.8 1195 759.84 695.82 22.87 2.861 102.92 8.23 2.33 3.81.8 1195 759.84 693.65 652.74 777.18 780		Variables	related to SWDS	5						Yr 7	135.10	0 4.65	5 1.67	7.04	465	5 147.9	4 260.54
Result: Y10 179.32 6.71 2.22 13.18 66.4 276.72 372.20 Methane captured in year 20 Kg methane 5.88 Y111 192.57 6.62 2.38 15.56 790 326.57 409.42 Methane captured in year 20 Kg methane 5.89 Y113 217.04 7.46 2.69 2.657 996 658.07 583.03 GWP 21 Kg occ2e 254 Y115 233.05 8.22 2.96 26.57 996 658.07 658.30 Compositing Source 2 Y118 267.99 9.22 3.23 5.81 1195 758.44 690.56 8.30.77 777.18 Y118 267.99 9.22 3.23 3.51 1195 758.44 690.56 8.83.01 1195 758.44 690.56 8.83.01 127.77 77.18 Compositing mease droppin wears header dow form insistons from or compositing Group in a 50.00 7.60 7.63 3.60 7.62 2.04 3.53 4.11 13.03 63.00 Y119 </td <td></td> <td>F- assumes</td> <td>s 60% of gas is capture</td> <td>ed 0.</td> <td>6</td> <td>(1-f)</td> <td>0.40</td> <td></td> <td></td> <td>Yr 8</td> <td>150.63</td> <td>3 5.18</td> <td>3 1.86</td> <td>8.91</td> <td>531</td> <td>I 187.10</td> <td>297.76</td>		F- assumes	s 60% of gas is capture	ed 0.	6	(1-f)	0.40			Yr 8	150.63	3 5.18	3 1.86	8.91	531	I 187.10	297.76
Results Y11 192.57 6.62 2.38 15.56 730 326.78 494.42 Methane captured in year 20 Kg methane 5.88 Y112 206.13 7.66 2.54 18.10 197 300.12 446.44 Methane captured in year 20 Kg methane 5.88 Y114 228.36 8.22 2.64 18.10 197 300.12 446.44 Methane captured in year 20 Kg methane 3.53 Y114 228.36 8.22 2.66 106.57 498.45 489.45 486.44 GWP 21 Kg occee 254 Y114 228.46 8.57 3.09 29.66 1062 622.28 685.52 Y116 242.92 8.57 3.00 Y127 266.66 9.51 3.43 3.61 1281 63.07 77.7 77.7 77.8 77.9 78.6 9.22 3.22 50.47 1400 105.95 88.84 1281 63.07 77.2 72.66 9.51 3.01 74.43 3.07.9 3.00 71.2 50.47 1400 105.95 <td< td=""><td></td><td>(1-OX)</td><td>Default (assumes so</td><td>il or comp</td><td>ost cover)</td><td></td><td>0.90</td><td></td><td></td><td>Yr 9</td><td>165.30</td><td>5.69</td><td>2.05</td><td>10.96</td><td>5 597</td><td>7 230.09</td><td>9 334.98</td></td<>		(1-OX)	Default (assumes so	il or comp	ost cover)		0.90			Yr 9	165.30	5.69	2.05	10.96	5 597	7 230.09	9 334.98
Methane captured in year 20 Methane emissions Kgmethane 5.86 Kgmethane Y12 205.13 7.05 2.54 18.10 797 380.12 446.46 46.46 Methane emissions Kgmethane 5.86 Y113 217.04 7.46 2.68 23.61 229 46.56 43.86 43.86 56.83.01 63.80 43.86 56.83.01 63.80 43.86 56.83.01 66.80.01 66.80.01 66.83.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 66.80.01 67.60.01 1.50.01 77.21 168.02 68.60.11 67.80.01 67.80.01 67.80.01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Yr 10</td><td>179.32</td><td>2 6.17</td><td>7 2.22</td><td>13.18</td><td>664</td><td>1 276.72</td><td>2 372.20</td></td<>										Yr 10	179.32	2 6.17	7 2.22	13.18	664	1 276.72	2 372.20
Methane captured in year 20 (WP 21) Kg methane 5.88 (Kg CO2+ Yr 13 (Kg CO2+ Yr 14 (Kg CO2+ Yr 1			Res	sults						Yr 11	192.5	7 6.62	2 2.38	15.56	5 730	326.78	8 409.42
Methane captured in year 20 (WP 21) Kg methane 5.88 (Kg CO2+ Yr 13 (Kg CO2+ Yr 14 (Kg CO2+ Yr 1																	
Methane emissions Kgmmthane 3.53 Yr 14 22.84 7.65 2.83 2.3.61 929 495.91 52.08 GWP 72 KgCO2e 254 Yr 16 24.90 6.827 3.08 29.66 6.22 2.96 6.827 3.08 1.08 669.56 558.07 558.07 558.07 568.050 74.40 74.40		Methane	captured in year	20		Kamethane	5 88										
GWP 21 Kg coze 74 Yr 16 249.05 8.2.2 2.96 2.5.7 996 568.07 558.07 CompoSing Source 2 Yr 16 249.21 8.57 3.09 2.66 12.67 996 568.07 558.07 558.20 2. CompoSing Source 2 Yr 18 267.99 9.2.2 3.28 81.1195 759.84 689.96 Yr 17 2.888.5 8.90 3.20 3.28.1110 3.95.11 12.16 83.17 707.18 Mi massion fastor to composing Source 2 0.001 Yr 12 282.67 10.07 3.62 45.78 13.99 81.84 13.28 905.54 74.44 Convert free grams to kge 0.001 1.50 3.00 Yr 22 282.67 10.07 3.62 11.01 3.96 52.12 159.37 71.138 981.93 981.93 981.93 981.93 985.06 GWP 72 Kg coze 0.24 31.50 63.00 Wree<			• •			-											
reacrobic composing Source 2 Y_{17} 28.88 8.90 3.20 3.26 112 600.16 632.74 2. Comps/H4 emissions = $\sum(M, EF)$. $10^{-3} - R$ $R = 0$ Yr 18 267.99 9.22 3.32 36.18 1195 759.84 669.96 Mi mass of arguine wate treated by 375.00 IPCC mix: IPCC details IPCC mix: IPCC mix: IPCC Mix Mass IPCC Mix Ma				21		-											
re aerobic composing 2. CompCH4 emissions Sums 2 (M, E, I). 10 ³ - R R = 0 Y1 19 267.96 9.22 3.23 32 38.1 T 75.9.4 feb.96.6 2. CompCH4 emissions (M, E, I). 10 ³ - R R = 0 Y1 19 276.66 9.51 3.43 39.61 1261 831.77 707.18 M mass of agrants was treated, the Eff assist factor for composing As follows: 0.001 1.50 3.00 74.8 981.93 781.62 Convert for grants log is Convert for grants log is 0.001 1.50 3.00 Y1 20 284.88 9.80 3.52 4.61.76 1394 981.93 781.62 Convert for grants log is 0.001 1.50 3.00 Y1 24 282.04 10.17 3.08 58.16 1593 122.16 693.05 139.4 693.93 987.72 GWP 72 kg 002.e 0.81 108.00 216.00 10.77 232.04 11.01 3.06 51.21 165.93 25.75 109.41 12.75 10.94 41.57 13			GWP	72		Kg CO2-e	254			Yr 16	249.2 ⁻	1 8.57	7 3.09	29.66	5 1062	2 622.8	6 595.52
2. CompsCH4 emissions = $\sum (M, EF_i) \cdot 10^3 \cdot R$ $R = 0$ Yr 19276.669.513.4339.611261831.77707.18Mimass of cognet waste traded, kg EH375.00IPCC detault IPCC mac Market for ampoundYr 20284.889.803.5343.141328905.84744.40Convert from grams to kgs0.0011.002Yr 21282.6710.073.6246.75744.40Convert from grams to kgs0.0011.503.00Yr 22307.0610.563.8054.28152711394991.33781.52GWP72kg Coze0.24315.063.00Yr 23300.0710.323.7250.4714601069.95818.84Methane emissionsKg methane0.011.503.00Yr 23300.0710.323.7250.471460109.95818.84GWP71kg Coze0.24315.063.00Yr 23300.0711.943.11707.18707.18Mitrous oxide emissions(calculate as tor CH4)0.060.300.60Yr 28337.0711.594.1774.4418591563.21104.216GWP310G.9834.8869.75Yr 30347.0111.934.308.27111.60Total greenhouse emissionsmethane GWP = 210.2431.5063.00When SWDS is hal, wastes decline frait fleabout 13-14 years)Nitrous oxideGWP310G.9834.8869										Yr 17	258.8	5 8.90	3.20	32.86	5 1128	690.10	6 632.74
Mil mass of organic wasts treaded, kg AS 75,00 IPCC matc Yr 21 292,67 100,07 3,62 43,14 1328 906,84 744,40 Convert from grams to kg 0.001 Yr 21 292,67 10,07 3,62 46,76 1328 906,84 744,40 Convert from grams to kg 0.001 Yr 21 292,67 10,32 3,62 46,76 1328 906,84 744,40 Mile finde from 1 great to writing Yr 21 292,67 10,32 10,77 3,62 46,76 1329 906,84 744,40 Mile finde from 1 great to writing Yr 21 292,67 10,32 10,36 64,28 1527 139,79 965,06 GWP 21 kg co2+e 0.24 31,50 63,00 Yr 22 320,04 11,01 3,96 62,12 1659 130,457 930,50 110,22 1727 316,89 114,1 4,11 70,27 1792 1475,75 1004,94 1102,16 112,12 80,12		re aerob	ic composting	So	urce 2					Yr 18	267.99	9 9.22	2 3.32	36.18	3 119	5 759.84	4 669.96
Efi emission factor for composing As follows: 0.03 4 8 Y121 292.67 10.07 3.62 46.76 1394 981.93 781.62 Convent from grams to kgs 0.001 1.50 3.00 Y122 300.07 10.32 3.72 50.47 1460 1059.95 818.84 Methane emissions Kg methane 0.01 1.50 3.00 Y124 313.73 10.79 3.88 58.16 1593 122.136 893.28 GWP 21 Kg 020-e 0.24 31.50 63.00 Y125 320.04 11.01 3.96 66.16 1726 138.93 967.72 GWP 72 Kg 020-e 0.81 108.00 216.00 Y126 320.04 11.01 4.14 4.11 74.44 1859 1563.21 104.94 Mitrous oxide emissions (cakulate as for CH4) 0.06 0.30 0.60 Y129 342.17 11.71 4.24 78.68 1925 1652.18 1073.88 GWP 310 63.80 54.28 63.75 Column A	2. Comp	aCH4 emis	ssions = $\sum (M_i)$. EF ;) .	10 ⁻³ - R	2	R=0			Yr 19	276.66	6 9.5 <i>°</i>	3.43	39.61	126	1 831.7	7 707.18
Convert from grams to kgs 0.001 Yr.22 300.07 10.32 3.72 50.47 1460 105.95 818.84 Methane emissions Kg methane 0.01 1.50 3.00 Yr.24 317.73 10.79 38.65 56.217 1139.79 856.06 GWP 21 Kg groc2+e 0.24 31.50 63.00 Yr.25 320.04 11.01 3.96 62.12 11597 1139.79 856.06 GWP 72 Kg groc2+e 0.81 106.00 216.00 Yr.25 320.04 11.01 3.96 62.12 11695 1393.67 77.2 Yr.27 331.69 11.11 4.11 70.27 179.92 1476.17 1472.16 1402.16<	•																
Eange from 1 oreal to werr Y r23 307.08 10.56 3.80 54.28 1527 1138.79 856.06 Methane emissions Kg methane 0.01 1.50 3.00 Yr 24 313.73 10.79 3.88 58.16 1539 122.136 893.28 GWP 72 Kg methane 0.01 1.50 3.00 Yr 24 313.73 10.79 3.88 58.16 1539 122.136 893.28 GWP 72 Kg mode 0.81 108.00 216.00 Yr 26 326.02 11.21 4.04 66.16 1726 138.33 967.72 Nitrous oxide emissions (calculate as for CH4) 0.06 0.30 0.60 Yr 28 337.07 11.59 4.17 74.44 1859 1563.21 1092.16 1093.38 GWP 310 6.98 34.88 69.75 Yr 30 347.01 11.93 4.30 6.94.8 previous years accumulated DDOCm accurs of accurs a				unposinį	J		0.05	4	0								
Methane emissions GWP Kg methane kg CO2+e 0.01 1.50 3.00 Yr 24 31.30 0.79 3.88 58.16 1503 1221 36 893.28 GWP 21 kg CO2+e 0.81 108.00 Yr 24 31.50 63.00 Yr 24 31.73 10.79 3.88 58.16 1503 1221 36 893.28 GWP 72 kg CO2+e 0.81 108.00 Yr 25 320.04 11.01 3.96 62.12 1659 1304.57 930.50 Nitrous oxide emissions (calculate as for CH4) 0.06 0.30 0.60 Yr 28 337.07 11.79 4.24 78.68 1925 1652.18 1079.38 GWP 310 6.98 34.88 69.75 Yr 30 347.01 11.93 4.30 82.97 1991 1742.40 116.60 Total greenhouse emissions methane generated = DDOCma X0.5 x 0.333 x).052 TOTAL Kg CO2-e 7.21 66.38 12275 Column C Column C 60.00 Column		Convert from	n grams to kgs				F ande from	k oreal to wa	rm								
GWP 21 Kg CO2+e 0.24 31.50 63.00 Yr 25 320.04 11.01 3.96 62.12 165.9 130.457 930.50 Witrous oxide emissions (calculate as for CH4) 0.06 0.30 0.60 Yr 25 320.07 11.21 4.04 66.16 172.6 1389.33 967.72 Witrous oxide emissions (calculate as for CH4) 0.06 0.30 0.60 Yr 25 337.07 11.59 4.17 74.44 185.9 1563.21 1042.16 GWP 310 6.98 34.88 69.75 Yr 30 347.01 11.93 4.30 82.97 1991 1742.40 116.00 Total greenhouse emissions methane GWP = 21 0.24 31.50 63.00 When SWDS is full, watte decline (hall life about 13.14 years) 0.50.5 0.38 N.052 0.00mm A 0.00mm A 0.00mm A 0.05.0 0.48 N.05 0.50.3 0.50.3 0.50.5 0.38 0.50.5 0.50.3 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 <		Methane	emissions				-										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		methane		21		-											
Yr 27 331.69 11.41 4.11 70.27 1792 1475.57 1004.94Nitrous oxide emissions(calculate as for CH4)0.060.300.60Yr 28337.0711.594.1774.441859 1563.21 1042.16GWP 3106.9834.8869.75Yr 30347.0111.934.3082.971991 1742.401116.60Total greenhouse emissionsmethane GWP = 210.2431.5063.00When SWDS is full, wastes decline (hall life about 13-14 years)11.60Total greenhouse emissionsmethane GWP = 210.2431.5063.00When SWDS is full, wastes decline (hall life about 13-14 years)Nitrous oxide, GWP-3106.9834.8869.75Column A DOCma = organic wates $v 2.2v.05 x MCF (v.5) + 0.948 x previous year's accumulated DDOCm column B methane generated v 2.05 x MCF (v.5) + 0.948 x previous year's accumulated DDOCm column B column C (annual methane generated v 4.2v.05 x MCF (v.5) + 0.948 x previous year's accumulated DDOCm column B column C (annual methane generated v 4.4 v.0.8Course of the column C (annual methane generated v 4.4 v.0.8Course of the column C (annual methane emissions) cumulative cover 30 yearsColumn C (annual methane emissions avoided from disposal of waste at a SWDS'2 000 Proc Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 5, ta duble 4.13 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 5, ta duble 4.13 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 5, for ta duble full or compositionWas biogenic Cor 2 emissions and to be side wast$			GWP			-											
Kg N20 0.02 0.11 0.23 Yr 29 342.17 11.77 4.24 78.68 1925 1652.18 1079.38 GWP 310 6.98 34.88 69.75 Yr 30 347.01 11.77 4.24 78.68 1925 1652.18 1079.38 Total greenhouse emissions methane GWP = 21 0.24 31.50 63.00 When SMDS is full, waste dedine (half life about 13-14 years) Total greenhouse emissions methane GWP = 21 0.24 31.50 63.30 When SMDS is full, waste dedine (half life about 13-14 years) Column L Column L Gord of the about 32-16 Column L																	
GWP 310 6.98 34.88 69.75 Yr 30 347.01 11.93 4.30 82.97 191 1742.40 1116.60 Total greenhouse emissions methane GWP = 21 0.24 31.50 63.00 When SWDS is full, wastes decline (half life about 13-14 years) Nitrous oxide, GWP=310 6.98 34.88 69.75 Column A DDOCma = organic wastes 0.2 x 0.5 x MCF (0.5) + 0.948 x previous year's accumulated DDOCm column B TotAL Kg co2-e 7.21 66.38 31.87 Golumn C methane generated = DDOCm X 0.5 x 0.33 x).052 Sources: TotAL Kg co2-e 7.21 66.38 123.75 Column C methane generated 4 0.4 x 0.8 Column C (annual methane emissions) cumulative over 30 years Sources: 1 UNFCCC 2008, Tool to determine methane emissions avoide from disposal of waste at a SWDS* 2 work includes for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. Biogenic CO2- emissions from non-biogenic sources, from incineration of mun 3 2006 IPCC Guidelines for National Greenhouse das Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. Biogenic CO2 emissions are excluded from all calculations, as these are not included under IPCC requirements. 3. Compare incineration Sources 3, A. Greaph 1.assumes 60% of methane is captured. Landfill has s		Nitrous o	xide emissions	(ca	alculate as	for CH4)	0.06	0.30	0.60	Yr 28	337.0	7 11.59	9 4.17	74.44	1859	9 1563.2	1 1042.16
Total greenhouse emissions methane GWP = 21 0.24 31.50 63.00 When SWDs is full, wastes decline (half life about 13-14 years) Nitrous oxide, GWP = 310 6.98 34.88 69.75 Column A DDCCma = organic waste x 0.2 x 0.5 x MCF (0.5) + 0.948 x previous year's accumulated DDOCm column B ToTAL Kg Co2e 7.21 66.38 122.75 Column C methane generated = DDCCma X 0.5 x 0.333 x).052 Sources: 1 UNFCCC 2008, "Tool to determine methane emissions avoided from disposal of waste at a SWDS" 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 5, Equation 5.2 & Ch3. Column C						Kg N2O	0.02	0.11	0.23	Yr 29	342.1	7 11.7	7 4.24	78.68	3 1925	5 1652.1	8 1079.38
Nitrous oxide, GWP=310 6.98 34.88 69.75 Column A DDOCma = organic waste x.0.2 x.0.5 x MCF (0.5) + 0.94 x previous year's accumulated DDOCm column B methane generated = DDOCma X 0.5 x 0.333 x).052 TOTAL Kg co2-e 7.21 66.38 132.75 Column C methane emistied = methane generated = DDOCma X 0.5 x 0.333 x).052 Sources: 1 UNFCCC 2008, 'Tool to determine methane emissions avoided from disposal of waste at a SWD5'' 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3 A sabow, Vol 2 Ch. 2: Stationary Combustion, table 2.2 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Kg 500.00 CO2 = (methane) 1.97 7.75 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. Column I Columin I Contracterisitics of Co2 (from incineration, floring floring in an otherportable. Columin G computition, table 2.2 Note biogenic emissions of CO2 (from incineration, floring are not reportable. Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed inci			GWP	310			6.98	34.88	69.75	9 Yr 30	347.0 ⁻	1 11.93	3 4.30	82.97	7 199 ⁻	1 1742.4	0 1116.60
Nitrous oxide, GWP=310 6.98 34.88 69.75 Column A DDOCma = organic waste x.0.2 x.0.5 x MCF (0.5) + 0.94 x previous year's accumulated DDOCm column B methane generated = DDOCma X 0.5 x 0.333 x).052 TOTAL Kg co2-e 7.21 66.38 132.75 Column C methane emistied = methane generated = DDOCma X 0.5 x 0.333 x).052 Sources: 1 UNFCCC 2008, 'Tool to determine methane emissions avoided from disposal of waste at a SWD5'' 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3 A sabow, Vol 2 Ch. 2: Stationary Combustion, table 2.2 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Kg 500.00 CO2 = (methane) 1.97 7.75 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. Column I Columin I Contracterisitics of Co2 (from incineration, floring floring in an otherportable. Columin G computition, table 2.2 Note biogenic emissions of CO2 (from incineration, floring are not reportable. Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed inci		Total are	enhouse emissio	ons me	thane GW	P = 21	0.24	31.50	63.00)	When SWDS	is full, wastes	decline (half l	ife about 13-14	vears)		
TOTAL Kg CO2-e 7.21 66.38 132.75 Column C methane emitted = methane generated x 0.4 x 0.8 Sources: 1 UNFCCC 2008, 'Tool to determine methane emissions avoided from disposal of waste at a SWDS' 2 006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. 4 As above, Vol 2 Ch. 2: Stationary Combustion, table 2.2 & Ch.3. 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2-e (nicthane) 1.97 CO2-e (nictous oxide)) 7.75 Greenhouse emissions Kg Co2 To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. The following diagrams do not take into account the GHG emissions that would be saved by using		· ·					6.98	34.88	69.75	Column A						s year's accum	ulated DDOCm
Sources: 1 UNFCCC 2008, "Tool to determine methane emissions avoided from disposal of waste at a SWDS" 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 4, table 4.1 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch 5, Equation 5.2 & Ch 3. 4 As above, Vol 2 Ch. 2: Stationary Combustion, table 2.2 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2 emissions from convertises of 27.50 CO2-e (methane) 1.97 CO2-e (methane) 1.97 CO2-e (methane) 5, 7.75 Greenhouse emissions (CO2 (from incineration, landfill and composing) are not reportable. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. The following diagrams do not take into account the GHG emissions that would be saved by using										column B	methane g	enerated =	DDOCma >	0.5 x 0.333	3 x).052		
Sources: 1 UNFCCC 2008, "Tool to determine methane emissions avoided from disposal of waste at a SWDS" 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. 4 As above, Vol 2 Ch. 2: Stationary Combustion, table 2.2 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2 e (michane) 1.97 CO2-e ((nethane) 1.97 CO2-e ((nethane) 1.97 CO2-e ((nethane) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composing) are not reportable. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. The following diagrams do not take into account the GHG emissions that would be saved by using				Т	OTAL	Kg CO2-e	7.21	66.38	132.75	Column C	methane e	mitted = me	thane gene	rated x 0.4 >	(0.8		
1 UNFCCC 2008, "Tool to determine methane emissions avoided from disposal of waste at a SWDS" 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. Column F Cumulative CO2-e from landfill, derived from CH4. 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. A sabove, Vol 2 Ch. 2: Stationary Combustion, table 2.2 Scompare incineration Sources 3, 4. Scompare incineration Sources 3, 4. Biogenic CO2 emissions are excluded from all calculations, as these are not included under IPCC requirements. CO2 emissions 277.50 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions - IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500										Column D	Column C	(annual met	hane emiss	ions) cumul	ative over 3	0 years	
1 UNFCCC 2008, "Tool to determine methane emissions avoided from disposal of waste at a SWDS" 2 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. Column F Cumulative CO2-e from landfill, derived from CH4. 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch.3. A sabove, Vol 2 Ch. 2: Stationary Combustion, table 2.2 Scompare incineration Sources 3, 4. Scompare incineration Sources 3, 4. Biogenic CO2 emissions are excluded from all calculations, as these are not included under IPCC requirements. CO2 emissions 277.50 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions - IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500	Sources:									Column E	Cumulative	e CO2-e, ae	erobic comp	ost. Includes	s CH4 & N2	2O. Note N2	O from land
 3 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol 5, Ch. 5 Equation 5.2 & Ch 3. 4 As above, Vol 2 Ch. 2: Stationary Combustion, table 2.2 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2 emissions 27.50 CO2-e (methane) 1.97 CO2-e (nitous oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. The following diagrams do not take into account the GHG emissions that would be saved by using 	1	UNFCCC 20	008, "Tool to determine	methane	emissions	avoided from di	sposal of waste	at a SWDS"									
4 As above, Vol 2 Ch. 2: Stationary Combustion, table 2.2 Biogenic CO2 emissions are excluded from all calculations, as these are not included under IPCC requirements. 3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household Kg CO2 emissions Kg Co2 CO2 emissions Kg Co2 Compare emissions of CO2 (from incineration, landfill and composting) are not reportable. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) 2500 	2	2 2006 IPCC	Guidelines for National	Greenhou	se Gas Inv	rentories, Vol 5,	Chs 4, table 4.	1		Column G	Cumulative	e CO2 emis	sions from r	ion-biogenic	sources, f	rom incinera	ation of mun
3. Compare incineration Sources 3, 4. Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2 emissions 27.50 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. Co2-e (nictious oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500	3	3 2006 IPCC	Guidelines for National	Greenhou	se Gas Inv	rentories, Vol 5,	Ch. 5 Equation	5.2 &	Ch 3.								
Equation 5.2 CO2 emissions based on the solid waste composition Waste incinerated per household kg 500.00 CO2 emissions 27.50 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. CO2 -e (nictious oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500	4	1 As above, V	ol 2 Ch. 2: Stationary C	Combustion	n, table 2.2	2				Biogenic CO	2 emissions a	re excluded fro	om all calculati	ons, as these a	are not include	ed under IPCC	requirements.
Waste incinerated per household kg 500.00 CO2 emissions 27.50 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. CO2-e (nitious Oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. Cumulative GHG emissions - IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500	3. Compa	are incin	eration Source	es 3, 4.													
CO2 emissions 27.50 Graph 1. assumes 60% of methane is captured. Landfill has some of the characterisitics of semi-anaerobic and some aerobic characterisitics. MCF of 0.6 has been used, with the default option for GHG emissions from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. CO2-e (nitous oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. Cumulative GHG emissions - IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500		Equation 5.2	2 CO2 emissions based	I on the so	lid waste o	composition											
CO2-e (methane) 1.97 CO2-e (nitous oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emission of CO2 (from incineration, landfill and composting) are not reportable. compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions - IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500				ehold			kg	500.00									
CO2-e (nitous oxide)) 7.75 Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. from compost. Incineration is assumed to be by semicontinuous fluidised bed incineration. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500										Graph 1. assu	imes 60% of i	methane is cap	otured. Landfill	has some of the	he characteris	itics of semi-a	naerobic
Greenhouse emissions Kg Co2 37.22 Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500			,														ssions
Note biogenic emissions of CO2 (from incineration, landfill and composting) are not reportable. To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. The following diagrams do not take into account the GHG emissions that would be saved by using		•		V.						from compost	. Incineration	is assumed to	be by semicor	tinuous fluidis	ed bed incine	ration.	
To find the total for incineration (for information only) omit the FCF factor. For landfill it will equal methane generated. Cumulative GHG emissions- IPCC defaults (with 60% gas capture from landfill) The following diagrams do not take into account the GHG emissions that would be saved by using 2500	N				·												
The following diagrams do not take into account the GHG emissions that would be saved by using 2500									d		Cumulath		iecione In	CC default	e (with co	/	
The following diagrams do not take into account the GHG emissions that would be saved by using	ro ina the to	nal for inciner	auon (ior information or	iiy) omit tr	IE FUF TAC	iui. Fui ianatili i	i wili equal meti	iarie generate	u.		Gumulati	e ono em			5 (WILL 00'	n yas capt	ure
2500													non	ianum)			
2500	The following	g diagrams do	not take into account t	he GHG e	missions tl	hat would be say	ved by using			05	00						
	-						, ,			25							

Total GHG emissions from electricity in Victoria are 1.31 tonnes CO2-e per MWh (based on brown coal use for electricity generation) Total GHG emissions from natural gas used directly for heat are 0.0572 Tonnes CO2-e per GJ.

Sources: National Greehouse Accounts (NGA) Factors Nov 2008


Greenhouse gas emissions for gas to electricity are estimated at:

0.4 tonnes per MWh for combined cycle gas plants

0.6 tonnes per MWh for other oil and gas to electricity technologies.

Source: "Greenhouse Gas Issues with Australia's Electricity Industry

Cumpston, R. and Burge, A. The Institute of Actuaries of Australia 2003.

